Your Ad Here

Sabtu, 23 Mei 2009

History of superconductivity II High temperature superconductivity II Classification II Applications

History of superconductivity

Superconductivity was discovered in 1911 by Heike Kamerlingh Onnes, who was studying the resistance of solid mercury at cryogenic temperatures using the recently-discovered liquid helium as a refrigerant. At the temperature of 4.2 K, he observed that the resistance abruptly disappeared.[8] In subsequent decades, superconductivity was found in several other materials. In 1913, lead was found to superconduct at 7 K, and in 1941 niobium nitride was found to superconduct at 16 K.

The next important step in understanding superconductivity occurred in 1933, when Meissner and Ochsenfeld discovered that superconductors expelled applied magnetic fields, a phenomenon which has come to be known as the Meissner effect.[9] In 1935, F. and H. London showed that the Meissner effect was a consequence of the minimization of the electromagnetic free energy carried by superconducting current.[10]

In 1950, the phenomenological Ginzburg-Landau theory of superconductivity was devised by Landau and Ginzburg.[11]This theory, which combined Landau's theory of second-order phase transitions with a Schrödinger-like wave equation, had great success in explaining the macroscopic properties of superconductors. In particular, Abrikosov showed that Ginzburg-Landau theory predicts the division of superconductors into the two categories now referred to as Type I and Type II. Abrikosov and Ginzburg were awarded the 2003 Nobel Prize for their work (Landau had received the 1962 Nobel Prize for other work, and died in 1968).

Also in 1950, Maxwell and Reynolds et al. found that the critical temperature of a superconductor depends on the isotopic mass of the constituent element.[12] [13] This important discovery pointed to the electron-phonon interaction as the microscopic mechanism responsible for superconductivity.

The complete microscopic theory of superconductivity was finally proposed in 1957 by Bardeen, Cooper, and Schrieffer.[14] Independently, the superconductivity phenomenon was explained by Nikolay Bogolyubov. This BCS theory explained the superconducting current as a superfluid of Cooper pairs, pairs of electrons interacting through the exchange of phonons. For this work, the authors were awarded the Nobel Prize in 1972.

The BCS theory was set on a firmer footing in 1958, when Bogoliubov showed that the BCS wavefunction, which had originally been derived from a variational argument, could be obtained using a canonical transformation of the electronic Hamiltonian.[15] In 1959, Lev Gor'kov showed that the BCS theory reduced to the Ginzburg-Landau theory close to the critical temperature.[16]

In 1962, the first commercial superconducting wire, a niobium-titanium alloy, was developed by researchers at Westinghouse, allowing the construction of the first practical superconducting magnets. In the same year, Josephson made the important theoretical prediction that a supercurrent can flow between two pieces of superconductor separated by a thin layer of insulator.[17] This phenomenon, now called the Josephson effect, is exploited by superconducting devices such as SQUIDs. It is used in the most accurate available measurements of the magnetic flux quantum \Phi_0 = \frac{h}{2e}, and thus (coupled with the quantum Hall resistivity) for Planck's constant h. Josephson was awarded the Nobel Prize for this work in 1973.

In 2008 it was discovered by Valerii Vinokur and Tatyana Baturina that the same mechanism that produces superconductivity could produce a superinsulator state in some materials, with almost infinite electrical resistance.[18]

High temperature superconductivity

Until 1986, physicists had believed that BCS theory forbade superconductivity at temperatures above about 30 K. In that year, Bednorz and Müller discovered superconductivity in a lanthanum-based cuprate perovskite material, which had a transition temperature of 35 K (Nobel Prize in Physics, 1987).[19] It was shortly found by M.K. Wu et al. that replacing the lanthanum with yttrium, i.e. making YBCO, raised the critical temperature to 92 K, which was important because liquid nitrogen could then be used as a refrigerant (at atmospheric pressure, the boiling point of nitrogen is 77 K)[20]. This is important commercially because liquid nitrogen can be produced cheaply on-site from air, and is not prone to some of the problems (solid air plugs, et cetera) of helium in piping. Many other cuprate superconductors have since been discovered, and the theory of superconductivity in these materials is one of the major outstanding challenges of theoretical condensed matter physics.

From about 1993, the highest temperature superconductor was a ceramic material consisting of thallium, mercury, copper, barium, calcium, and oxygen, with Tc=138 K.[21]

In February 2008, an iron-based family of high temperature superconductors was discovered.[22][23] Hideo Hosono, of the Tokyo Institute of Technology, and colleagues found lanthanum oxygen fluorine iron arsenide (LaO1-xFxFeAs), an oxypnictide that superconducts below 26 kelvins. Subsequent research from other groups suggests that replacing the lanthanum in LaO1-xFxFeAs with other rare earth elements such as cerium, samarium, neodymium and praseodymium leads to superconductors that work at 52 K. Experts hope that having another family to study will also lead to a theory of the cuprate superconductors.

Classification

There is not just one criterion to classify superconductors. The most common are:

Applications

Flyingsuperconductor.ogg
Video of superconducting levitation of YBCO

Superconducting magnets are some of the most powerful electromagnets known. They are used in MRI and NMR machines, mass spectrometers, and the beam-steering magnets used in particle accelerators. They can also be used for magnetic separation, where weakly magnetic particles are extracted from a background of less or non-magnetic particles, as in the pigment industries.

Superconductors have also been used to make digital circuits (e.g. based on the Rapid Single Flux Quantum technology) and RF and microwave filters for mobile phone base stations.

Superconductors are used to build Josephson junctions which are the building blocks of SQUIDs (superconducting quantum interference devices), the most sensitive magnetometers known. SQUIDs are used in Scanning SQUID microscopes. Series of Josephson devices are used to define the SI volt. Depending on the particular mode of operation, a Josephson junction can be used as a photon detector or as a mixer. The large resistance change at the transition from the normal- to the superconducting state is used to build thermometers in cryogenic micro-calorimeter photon detectors.

Other early markets are arising where the relative efficiency, size and weight advantages of devices based on HTS outweigh the additional costs involved.

Promising future applications include high-performance transformers, power storage devices, electric power transmission, electric motors (e.g. for vehicle propulsion, as in vactrains or maglev trains), magnetic levitation devices, and Fault Current Limiters. However superconductivity is sensitive to moving magnetic fields so applications that use alternating current (e.g. transformers) will be more difficult to develop than those that rely upon direct current.

source: wikipedia

Tidak ada komentar:

Posting Komentar