Technological applications of superconductivity
Some of the technological applications of superconductivity include- the production of magnetometers based on SQUIDs,
- digital circuits (including those based on Josephson junctions and rapid single flux quantum technology),
- powerful electromagnets used in maglev trains, Magnetic Resonance Imaging (MRI) and Nuclear magnetic resonance (NMR) machines and the beam-steering magnets used in particle accelerators,
- control magnets in particle accelerators and fusion reactors (tokamaks),
- power cables,
- RF and microwave filters (e.g., for mobile phone base stations, as well as, military ultra-sensitive/selective receivers), and
- railgun and coilgun magnets.
Magnetic Resonance Imaging (MRI) and Nuclear Magnetic Resonance (NMR)
The biggest application right now for superconductivity is in producing the large volume, stable magnetic fields required for MRI and NMR. This represents a multi-billion US$ market for companies such as Oxford Instruments, Siemens etc. The magnets typically use low temperature superconductors (LTS) because high-temperature superconductors are not yet able to be formed in 100 kilometer spools of wire necessary for the high-powered magnets[1]. These instruments need to be cooled to liquid helium temperatures to superconduct. LTS is also used in high field scientific magnets because copper has a limit to the field strength it can produce.
High-temperature superconductivity (HTS)
The commercial applications so far for high-temperature superconductors (HTS) have been limited.
HTS superconduct at temperatures up to that of liquid nitrogen which makes them cheaper to cool.
The problem with HTS technology is that the currently known high-temperature superconductors are brittle ceramics which are expensive to manufacture and not easily turned into wires or other useful shapes.[citation needed]
Therefore the applications have been where HTS has some other intrinsic advantage i.e. in
- low thermal loss current leads for LTS devices (low thermal conductivity),
- RF and microwave filters (low resistance to RF), and
- increasingly in specialist scientific magnets, particularly where size and electricity consumption are critical (while HTS wire is much more expensive than LTS in these applications this can be offset by the relative cost and convenience of cooling).
HTS wire
Commercial quantities of HTS wire based on BSCCO are now available at around five times the price of the equivalent copper conductor (this wire is referred to as Generation 1 conductor).[citation needed] BSCCO wire requires an expensive batch production process and relatively high quantities of silver (but less than 10% of the cost). Pilot plants have been developed that use YBCO to produce coated conductors in a semi-continuous process (Generation 2).[citation needed] Manufacturers are claiming the potential to reduce the price in volume to 50% to 20% of BSCCO. If the latter occurs, HTS wire will be competitive with copper in many large industrial applications, putting aside the cost of cooling.[citation needed]
Promising future industrial and commercial HTS applications include transformers, fault current limiters, power storage, motors, fusion reactors (see ITER) and magnetic levitation devices. (For a relatively technical and US-centric view of state of play of HTS technology in power systems and the development status of Generation 2 conductor see Superconductivity for Electric Systems 2007 US DOE Annual Peer Review [2].)
HTS also has a future in scientific and industrial magnets, including use in NMR and MRI systems. Also one intrinsic attribute of HTS is that it can withstand much higher magnetic fields than LTS, so HTS at liquid helium temperatures are being explored for very high-field inserts inside LTS magnets.
Holbrook Superconductor Project
The Holbrook Superconductor Project is a project to design and build the world's first production superconducting transmission power cable. The lines were commissioned in late June 2008. The suburban Long Island electrical substation is fed by about 600-meter-long underground cable system consists of about 99 miles of high-temperature superconductor wire manufactured by American Superconductor, installed underground and chilled with liquid nitrogen to minimize power loss in the transmission lines.[3]
Magnesium diboride
Magnesium diboride is a much cheaper superconductor than either BSCCO or YBCO in terms of cost per current-carrying capacity per length (cost/(kA*m)), in the same ballpark as LTS, and on this basis many manufactured wires are already cheaper than copper. Furthermore, MgB2 superconducts at temperatures higher than LTS (its critical temperature is 39 K, compared with less than 10 K for NbTi and 18.3 K for Nb3Sn), introducing the possibility of using it at 10-20 K in cryogen-free magnets or perhaps eventually in liquid hydrogen.[citation needed] However MgB2 is limited in the magnetic field it can tolerate at these higher temperatures, so further research is required.
source: wikipedia
Tidak ada komentar:
Posting Komentar