Teoría BCS
La teoría microscópica más aceptada para explicar los superconductores es la Teoría BCS, presentada en 1957. La superconductividad se puede explicar como una aplicación del Condensado de Bose-Einstein. Sin embargo, los electrones son fermiones, por lo que no se les puede aplicar esta teoría directamente. La idea en la que se basa la teoría BCS es que los electrones se aparean formando un par de fermiones que se comporta como un bosón. Esta pareja se denomina par de Cooper y su enlace está justificado en las interacciones de los electrones entre sí mediada por la estructura cristalina del material.
Teoría Ginzburg-Landau
Otro enfoque diferente es mediante la Teoría Ginzburg-Landau, que se centra más en las propiedades macroscópicas que en la teoría microscópica, basándose en la ruptura de simetrías en la transición de fase.
Esta teoría predice mucho mejor las propiedades de sustancias inhomogéneas, ya que la teoría BCS es aplicable únicamente si la sustancia es homogénea, es decir, si la energía de la banda prohibida es constante en el espacio. Cuando la sustancia es inhomogénea, el problema puede ser intratable desde el punto de vista microscópico.
La teoría se fundamenta en un cálculo variacional en el que se trata de minimizar la energía libre de Helmholz con respecto a la densidad de electrones que se encuentran en el estado superconductor. Las condiciones para aplicar la teoría son
- las temperaturas manejadas tienen que estar cerca de la temperatura crítica, dado que se fundamenta en un desarrollo en serie de Taylor alrededor de Tc.
- La pseudofunción de onda Ψ, así como el potencial vector , tienen que variar suavemente.
Esta teoría predice dos longitudes características:
- longitud de penetración: es la distancia que penetra el campo magnético en el material superconductor
- longitud de coherencia: es el tamaño aproximado del par de Cooper
Clasificación
Los superconductores se pueden clasificar en función de:
- Su comportamiento físico, pueden ser de tipo I (con un cambio brusco de una fase a otra, o en otras palabras, si sufre un cambio de fase de primer orden) o de tipo II (si pasan por un estado mixto en que conviven ambas fases, o dicho de otro modo, si sufre un cambio de fase de segundo orden).
- La teoría que los explica, llamándose convencionales (si son explicados por la teoría BCS) o no convencionales (en caso contrario).
- Su temperatura crítica, siendo de alta temperatura (generalmente se llaman así si se puede alcanzar su estado conductor enfriándolos con nitrógeno líquido, es decir, si Tc > 77K), o de baja temperatura (si no es así).
- El material de que están hechos, pudiendo ser elementos puros (como el mercurio o el plomo), superconductores orgánicos (si están en forma de fulerenos o nanotubos, lo cual los podría incluir en cierto modo entre los elementos puros, ya que están hechos de carbono), cerámicas (entre las que destacan las del grupo YBCO y el diboruro de magnesio) o aleaciones.
Aplicaciones
Los imanes superconductores son algunos de los electroimanes más poderosos conocidos. Se utilizan en los trenes maglev, en máquinas para la resonancia magnética nuclear en hospitales y en el direccionamiento del haz de un acelerador de partículas. También pueden utilizarse para la separación magnética, en donde partículas magnéticas débiles se extraen de un fondo de partículas menos o no magnéticas, como en las industrias de pigmentos.
Los superconductores se han utilizado también para hacer circuitos digitales y filtros de radiofrecuencia y microondas para estaciones base de telefonía móvil.
Los superconductores se usan para construir uniones Josephson, que son los bloques de construcción de los SQUIDs (dispositivos superconductores de interferencia cuántica), los magnetómetros conocidos más sensibles. Una serie de dispositivos Josephson se han utilizado para definir el voltio en el sistema internacional (SI). En función de la modalidad de funcionamiento, una unión Josephson se puede utilizar como detector de fotones o como mezclador. El gran cambio en la resistencia a la transición del estado normal al estado superconductor se utiliza para construir termómetros en detectores de fotones criogénicos.
Están apareciendo nuevos mercados donde la relativa eficiencia, el tamaño y el peso de los dispositivos basados en los superconductores de alta temperatura son superiores a los gastos adicionales que ellos suponen.
Aplicaciones futuras prometedoras incluyen transformadores de alto rendimiento, dispositivos de almacenamiento de energía, la transmisión de energía eléctrica, motores eléctricos (por ejemplo, para la propulsión de vehículos, como en vactrains o trenes maglev) y dispositivos de levitación magnética. Sin embargo la superconductividad es sensible a los campos magnéticos en movimiento de modo que las aplicaciones que usan corriente alterna (por ejemplo, los transformadores) serán más difícil de elaborar que las que dependen de corriente continua.
Tidak ada komentar:
Posting Komentar